THE ACCUMULATION FUNCTION AND ITS DERIVATIVE (FTC 2)

IN-CLASS SAMPLE PROBLEMS

Notes Handout

Find the derivative of each function:

Ex. 1
$$g(x) = \int_{\sin x}^{\cos x} \ln t dt$$

the derivative of each function:

$$1 g(x) = \int_{\sin x}^{\cos x} \ln t dt$$

$$g'(x) = \ln(\cos x) \cdot (-\sin x) - \ln(\sin x)(\cos x)$$

$$g'(x) = \tan e^{x} \cdot (e^{x}) - 3x^{2} \tan(x^{3})$$

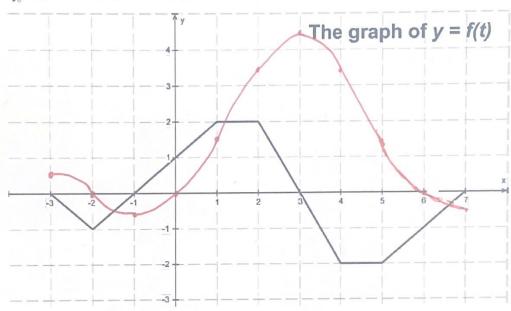
$$\left(\mathbf{E} \mathbf{x. 2} \ g\left(\mathbf{x} \right) = \int_{x^{1}}^{e^{s}} \tan t dt \right)$$

Worksheet 51 HOMEWORK

The Accumulation Function

Example 1

Let $g(x) = \int_0^x f(t) dt$. The graph of y = f(t) is given below.



Fill in the values of the table. (Note: the lower limit is 0)

$$g'(x) = f(x)$$

x	g(x)	g'(x) = f(x)	g''(x)
-3	1/2		
-2	0	-1	und
-1	- 1/2	٥	1
0	0	1	1
1	3/2	2	und
2	7/2	2	und
3	9/2	0	- 2
4	7/2	- 2	und
5	3/2	-2	und
6	0	-1	1
7	-1/2		

Example 2

Use the values from your table to sketch a graph of y = g(x). Be sure to indicate all relative extrema and points of inflection.

Use your graph as an aide to answer the following questions.

1. On what interval(s) is the graph of y = g(x) increasing?

2. On what interval(s) is the graph of y = g(x) decreasing?

3. On what interval(s) is the graph of y = g(x) concave up?

4. On what interval(s) is the graph of y = g(x) concave down?

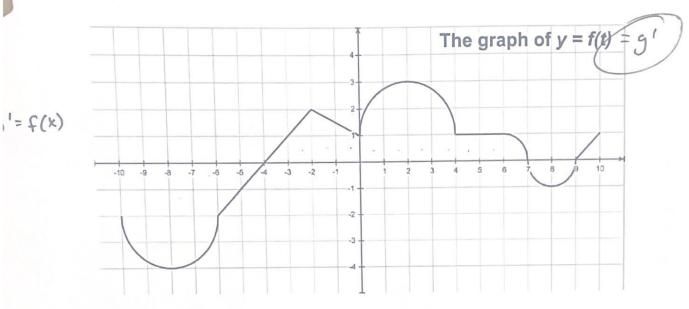
5. How can you use the graph of f to determine where y = g(x) has a local minimum?

6. How can you use the graph of f to determine where y = g(x) has a local maximum?

7. How can you use the graph of f to determine where y = g(x) has a point of inflection?

Example 3

Let $g(x) = \int_{-t}^{x} f(t) dt$. The graph of y = f(t) is given below.



х	g(x)	g'(x) = f(x)	g''(x) = f'
- 8	6 + f T(4) = 6+TT	- 4	0
4	9 + = 11(4) = 9+211	1	und
7	9+211+2+411	0	und

- a. The graph of y = g(x) is increasing on (-4, 7) (9, 10) because 9' > 0
- b. The graph of y = g(x) is decreasing on (-10, -4) (7, 9) because g' < 0
- c. The graph of y = g(x) is concave down on (-10, -8) (-2,0) (2, 4) (6,8)because g' is decreasing (g'' < 0)
- **d.** The graph of y = g(x) is concave up on (-6, -2)

because

e. The graph of y = g(x) has a local maximum at X = 7

because g' Ds from + to -

- f. The graph of y = g(x) has a local minimum at X = -4, X = 9because $g' \Delta s$ from -4 to +4.
- g. The graph of y = g(x) has a point of inflection at X = -8, -2, 2, 8because $g'' \Delta s$ signs.

Example 4 - Complete each statement

 $g(x) = \int_{0}^{x} f(t)dt$ is increasing whenever the graph of f is:

 $g(x) = \int_{0}^{x} f(t)dt$ is decreasing whenever the graph of f is:

 $g(x) = \int_{0}^{x} f(t)dt$ is concave up whenever the graph of f is:

 $g(x) = \int_{0}^{x} f(t)dt$ is concave down whenever the graph of f is:

 $g(x) = \int_{0}^{x} f(t)dt$ has a local extrema whenever the graph of f.

 $g(x) = \int_{0}^{x} f(t)dt$ has a point of inflection whenever the graph of f.